Genetics Department, Faculty of Agriculture, Beni-Suef University

Biotechnology

Properties Of Genetic Material

1. Repository of genetic information

Biotechnolog

- 2. Info must be accessible, allow cell to respond
- 3. Info must be in form transmissible to progeny
- 4. Physical and chemical stability
- 5. Potential for heritable change

Where is DNA found?

James Watson and **Francis Crick** discovered that chromosomes are made up of DNA and called it a double helix. These chromosomes are located in the nucleus!!

Genetic Information

Gene - basic unit of genetic formation. Genes determine the inherited characters.

Genome - the collection of genetic information.

Chromosomes – storage units of *genes*.

DNA - is a nucleic acid that ontains the genetic instructions specifying the biological levelopment of all cellular forms of life

Genotypes 🔶 Phenotypes

Biotechnolog

At each locus (except for sex chromosomes) • there are 2 genes. These constitute the individual's *genotype* at the locus.

The expression of a genotype is termed a *phenotype*. For example, hair color, weight, or the presence or absence of a disease.

1866 **Gregor Mendel** published the results of his investigations of the inheritance of "factors" in pea plants.

Biotechnology

A HISTORY OF DNA

Discovery of the DNA double helix •

 Frederick Griffith – Discovers that a factor in diseased bacteria can ansform harmless bacteria into deadly (1928) bacteria

70 Frith

Biotechnology

Rosalind B. Franklin - X-ray photo of DNA. (1952)

Watson (U.S.A) and Crick (Britain)

univ

Biotechnology

1953 article in Nature

Watson and Crick - described the DNA molecule from Franklin's X-ray. (1953) С.

C. Structure of DNA

James Watson & Francis Crick – American biologist & British physicist who built the first accurate structural model of DNA (Nobel Prize in 1962).

Biotechnolog

-Watson & Crick's model of DNA was a double helix (twisted ladder), in which 2 strands were wound around each other.

Identifying the Substance of Genes

Griffith's Experiments

Lesson Overview

The disease-causing bacteria (S strain) grew – into smooth colonies on culture plates, whereas the harmless bacteria (R strain) produced colonies with rough

Identifying the Substance of Genes

Griffith's Experiments

Lesson Overview

When Griffith injected mice with disease- – causing bacteria, the mice developed pneumonia and died.

When he injected mice with harmless bacteria, the mice staved healthy.

the five-carbon sugar found in RNA.

the five-carbon sugar found in DNA.

Biotechnology

Nucleotide

DNA

DNA

L oSil [* Ė, DNA

The DNA backbone

Putting the DNA backbone together refer to the 3' and 5' – ends of the DNA the last trailing carbon •

Anti-parallel strands

Nucleotides in DNA backbone are bonded from phosphate to sugar between 3' & 5' carbons

- DNA molecule has "direction"
- complementary strand runs in opposite direction

Polut Universit

Biotechnology

A+T/G+C = ConstantA+G/T+C = 1<u>DNA turn = 10 bp</u>

DNA turn length = 34 A^o

What is the gene

Biotechnolog

A gene is a piece of DNA that codes for a protein.

DNA Replication DNA .- تضاعف ال

DNA Replication

Possible Models of DNA Replication

Semiconservative -1 Conservative -2 Dispersive -3

Possible Models of DNA Replication

Biotechnolog

Replication of circular DNA in E. coli (3.10):

- Two replication forks result in a <u>theta-like</u> (θ) structure.
- 2. As strands separate, positive supercoils form elsewhere in the molecule.
- 3. <u>Topoisomerases</u> relieve tensions in the supercoils, allowing the DNA to continue to separate.

The replication of eukaryotic chromosomes. At the beginning of the S phase of the cell cycle, eukaryotic chromosome replication begins from multiple origins of replication. As the S phase continues, the replication forks move bidirectionally to replicate the DNA. By the end of the S phase, all the replication forks have merged. The net result is two sister chromatids that are attached to each other at the centromere.

Replication: steps

- Unwind DNA
 - <u>helicase</u> enzyme
 - unwinds part of DNA helix
 - stabilized by <u>single-stranded binding proteins</u>

Unwind DNA

Biotechnolo

5'

3'

- <u>1- Helicase</u> enzyme
 - unwinds part of DNA helix
 - 2- stabilized by single-stranded binding proteins

3'

L5'

5'

3- Primase: responsible for SYNTHESIS the RNA primer

4- DNA polymerase III DNA polymerase III is responsible for synthesizing DNA

Leading strand synthesis continues in a 5' to 3' direction.

Discontinuous synthesis produces 5' to 3' DNA segments called Okazaki fragments.

Leading strand synthesis continues in a 5' to 3' direction.

Discontinuous synthesis produces 5' to 3' DNA segments called Okazaki fragments.

Replication

3' 5'

3'5'

Biotechnolo

5

Leading strand synthesis continues in a 5' to 3' direction.

Discontinuous synthesis produces 5' to 3' DNA segments called Okazaki fragments.